Philadelphia University Faculty: Science Department: Biotechnology and Genetic Engineering Academic year: 2022/2023

Approval date: Issue: Credit hours: 3

Course Syllabus

Bachelor

Course information

Course#		Course title				Prerequisite	
0240326		Plant biotechnology			0240216		
Course type Class tin					ne	Room #	
□ University Requirement □ Faculty Requirement			ent	11:15-12:45		21001	
🗆 Major Requir	rement	□ Elective	\boxtimes	Compulsory	Mon, Wed		21001

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Ayat Al-Azab	1018	2475	Sun, Tue: ٩:٤٥ – ١١:٠٠ Mon, Wed: ١٤:٠٠ – ١٣:٠٠	aalazab@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method						
⊠ Physical □ Online □ Blended						
Learning Model						
Precentage Synchronous Asynchronous Physical						

Course Description

This course presents an overview of the different techniques used in plant transformation and production of genetically manipulated plants. Students are expected to develop a better understanding of what plant biotechnology is along with the commercial applications, and issues/challenges in the area of plant production to meet the uprising continuous global demand in food production.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes	
		Knowledge	
K01	Understand the concepts of plant biotechnology.	Kp2	
K02	Compare between the traditional and modern methods for plant crop improvement	Kp2	
K03	List the disadvantages of traditional methods of plant breeding	Kp2	
K04	Understand the different methods of mutagenesis to obtain plant with desired trait	Kp2	
K05	Understand the mechanism of gene transfer into the plant cell	Kp2	

K06	Describe the different methods using for transgenic plant production	Kp2
K07	Identify the important traits for plant genetic engineering	Kp2
K08	Discuss the benefits and the risks of genetic manipulation of plants.	Kp2
	Skills	
	Competencies	
C01	Describe the role of plant biotechnology in solving some environmental problems, such as climate change, food security.	Cp1
C02	Learn how plants with desired traits can be produced by gene transfer.	Cp1
C03	Utilize the gained knowledge as guidance in debating issues like global warming, world hunger, and environmental sustainability	Cp1
C04	Be able to analyze and interpret results through discussion of scientific articles or other publications related to plant biotechnology.	Cp1
C05	Apply critical thinking and problem solving skills.	Cp1

Learning Resources

Course textbook	 Stewart Jr, C. N. (Ed.). (2016). Plant biotechnology and genetics: principles, techniques, and applications. John Wiley & Sons. Ricroch, A., Chopra, S., & Kuntz, M. (Eds.). (2021). Plant biotechnology: experience and future prospects. Springer Nature.
Supporting References	
Supporting websites	
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other

Meetings and subjects timetable

Wee k	Торіс	Learning Methods *	Tasks	Learning Material Text book
1	 The Evolution of agriculture and tools for plant innovation Emergence of agriculture. Hybrids and first biotechnologies. Advanced breeding techniques: Genetic modification Technologies. 	Lectures		P. 13-35 (2)
2,3	 The molecular basis of genetic modification and production of transgenic plants: Transcription and translation. Marker genes and promoter (selectable marker genes: selection on antibiotic, selection on herbicides). Non selectable marker genes (<i>B</i> Glucurnonidase, Luciferase, Green fluorescent proteins). 	Lectures		P. 133-145 P. 233-250 (1)
4,5	Transgenic plant production	Lectures		P. 262-284

	Concerclamore the second DNL 11		(4)
	- General transformation process, DNA delivery, target		(1)
	tissue status, selection and regeneration.		
	- Agrobacterium; history of our knowledge of		
	Agrobacterium, T-DNA, Agroinfiltration,		
	Arabidopsis and floral dip.		
	- Particle bombardment; history of particle		
	bombardment; fate of introduced DNA, power and		
	problems of direct DNA introduction.		
	- Other methods; protoplasts, whole tissue		
	electroporation, Silicon carbide whiskers, viral		
	vectors, laser micropuncture and nanofiber arrays.		
	Genes and traits of interest for transgenic plants		
	- Identifying genes of interest via genomics and other		
	omics technologies.		
	- Traits for improved crop production using transgenics	* .	P. 211-222
6,7	-Herbicides resistance.	Lectures	(1)
	-Insects resistance.		~ /
	-Pathogen resistance.		
	-Traits for improved products and food quality.		
	Techniques and tools of modern plant breeding: Field crops	<u> </u>	
	 Plant breeding and plant ideotypes. 		
	 Plant breeding exploits phenotype and genotype. 		
	 Molecular markers and plant breeding. 		P. 25-35
8	 Recombinant inbred lines for plant breeding. 	Lectures	(2)
	 Plant breeding and gene expression techniques. 		(2)
	 Forward and reverse genetics. 		
	 Torward and reverse genetics. Targeted genome editing technology 		
9	Midterm exam		
,	Genomic methods for improving abiotic stress tolerance in		
	crops		
	- The difficulty of improving abiotic stress tolerance in crops		
	crops.		
	crops.Some basic concept of QTL analysis and MAS		P 35-45
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. 	Lectures	P. 35-45
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. 	Lectures	P. 35-45 (2)
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: 	Lectures	
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). 	Lectures	
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. 	Lectures	
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). 	Lectures	
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. 	Lectures	
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees 	Lectures	
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? 	Lectures	
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? Are Cultivated Plants More Susceptible to Viruses 	Lectures	
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? Are Cultivated Plants More Susceptible to Viruses Than 	Lectures	
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? Are Cultivated Plants More Susceptible to Viruses Than Their Wild Relatives? 	Lectures	
10	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? Are Cultivated Plants More Susceptible to Viruses Than Their Wild Relatives? Examples of Natural Resistance 	Lectures	
	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? Are Cultivated Plants More Susceptible to Viruses Than Their Wild Relatives? Examples of Natural Resistance Examples of Transgenic Resistance 		(2)
10 11,1 2	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? Are Cultivated Plants More Susceptible to Viruses Than Their Wild Relatives? Examples of Natural Resistance RNAi: A Newly Discovered, Nucleic Acid 	Lectures	(2) P. 155-169
	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? Are Cultivated Plants More Susceptible to Viruses Than Their Wild Relatives? Examples of Natural Resistance Examples of Transgenic Resistance RNAi: A Newly Discovered, Nucleic Acid Sequence-Based Inducible Defense Mechanism 		(2)
	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? Are Cultivated Plants More Susceptible to Viruses Than Their Wild Relatives? Examples of Natural Resistance Examples of Transgenic Resistance RNAi: A Newly Discovered, Nucleic Acid Sequence-Based Inducible Defense Mechanism Manipulating RNAi to Induce Virus 		(2) P. 155-169
	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? Are Cultivated Plants More Susceptible to Viruses Than Their Wild Relatives? Examples of Natural Resistance Examples of Transgenic Resistance RNAi: A Newly Discovered, Nucleic Acid Sequence-Based Inducible Defense Mechanism Manipulating RNAi to Induce Virus Resistance in Plants 		(2) P. 155-169
	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? Are Cultivated Plants More Susceptible to Viruses Than Their Wild Relatives? Examples of Natural Resistance RNAi: A Newly Discovered, Nucleic Acid Sequence-Based Inducible Defense Mechanism Manipulating RNAi to Induce Virus Resistance in Plants Modification of the RNAi Strategy: RNAi, or Gene 		(2) P. 155-169
	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? Are Cultivated Plants More Susceptible to Viruses Than Their Wild Relatives? Examples of Natural Resistance Examples of Transgenic Resistance RNAi: A Newly Discovered, Nucleic Acid Sequence-Based Inducible Defense Mechanism Manipulating RNAi to Induce Virus Resistance in Plants 		(2) P. 155-169
	 crops. Some basic concept of QTL analysis and MAS performed at gene level. Genomic methods available for gene discovery. and increasing breeding efficiency: Next generation sequencing (NGS). Association analysis. Genome wide selection. Virus-Resistant Crops and Trees Can Plants Defend Themselves Against Viruses? Are Cultivated Plants More Susceptible to Viruses Than Their Wild Relatives? Examples of Natural Resistance RNAi: A Newly Discovered, Nucleic Acid Sequence-Based Inducible Defense Mechanism Manipulating RNAi to Induce Virus Resistance in Plants Modification of the RNAi Strategy: RNAi, or Gene 		(2) P. 155-169

[Role of biotechnology to produce plants resistant to fungal		
	pathogens		
	- Plant disease caused by fungi.		
	- Traditional methods used to control fungal diseases.		
13	- Mechanism of plants resistance to fungal pathogens in	Lectures	P. 169-181
15	nature.	Lectures	(2)
	- Use of transgene technology to produce plants		
	resistant to fungal pathogens.		
	- Some examples of transgenic plants shown to be		
	resistant to fungal disease.		
	Production of medicines from engineered proteins in plants:		
	Proteins for a new century		
	- Recombinant proteins turning to plant production.		
	- The first approved recombinant plant protein drug.		P. 263-277
14	- Recombinant proteins from plants can help battle	Lectures	(2)
	various diseases.		(-)
	- Tobacco-Based production of proteins with health		
	benefits		
	- Plant proteins for other medical conditions.		
	Is it possible to overcome the GMO controversy?		
	- The 'Modern' Thought		D 10 11
15	- The 'Environmentalist' thought	Lectures	P. 10-117
	- The 'Postmodern' thought		(2)
	- Religious views on GMOs		
16	Final Exam		
10		1 11 .	11.1

* includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology	
Communication skills	
Communication skins	
Application of concepts learnt	

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	% 30	9	K01-K07
			C01,C02
Various Assessments *	% 30	2,3,5,7,8,11,13,14,15	K01-K08

			C01-C05
Final Exam	% 40	16	K01-K08 C01-C05
Total	%100		01-005

* includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Co	urse Outcomes v	with Learning a	nd Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**
Knowledge			
K01-K05	All outcomes	Lectures	Quizzes and exams
	Skills		•
	Competencies		
C01-C04	All outcomes	Lectures	Quizzes and exams

* includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

** includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group

or individual projects.

Policy	Policy Requirements				
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final mark				
	recorded on transcript is (35%).				
	• Missing an exam without a valid excuse will result in a zero grade to be				
	assigned to the exam or assessment.				
Missing	• A Student who misses an exam or scheduled assessment, for a legitimate				
Exams	reason, must submit an official written excuse within a week from the				
	exam or assessment due date.				
	• A student who has an excuse for missing a final exam should submit the				
	excuse to the dean within three days of the missed exam date.				
Attendance	The student is not allowed to be absent more than (15%) of the total hours				
	prescribed for the course, which equates to six lectures days (M, W) and seven				
	lectures (S,T,R). If the student misses more than (15%) of the total hours				
	prescribed for the course without a satisfactory excuse accepted by the dean of the				
	faculty, s/he will be prohibited from taking the final exam and the grade in that				
	course is considered (zero), but if the absence is due to illness or a compulsive				
	excuse accepted by the dean of the college, then withdrawal grade will be				
	recorded.				
Academic	Philadelphia University pays special attention to the issue of academic integrity,				
Honesty	and the penalties stipulated in the university's instructions are applied to those who				
	are proven to have committed an act that violates academic integrity, such as:				
	cheating, plagiarism (academic theft), collusion, and violating intellectual property				
	rights.				

Course Polices

Program Learning Outcomes to be assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
1	Kp2	Environmental	Quizzes and	
		biotechnology	exams	
2	Cp1	Environmental	Quizzes and	
		biotechnology	exams	

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
Kp2	Quizzes and exams
Cp1	Quizzes and exams

Assessment Rubric of the Program Learning Outcome